Preconditioned GMRES methods for least squares problems
نویسندگان
چکیده
منابع مشابه
GMRES Methods for Least Squares Problems
The standard iterative method for solving large sparse least squares problems min ∈Rn ‖ −A ‖2, A ∈ Rm×n is the CGLS method, or its stabilized version LSQR, which applies the (preconditioned) conjugate gradient method to the normal equation ATA = AT . In this paper, we will consider alternative methods using a matrix B ∈ Rn×m and applying the Generalized Minimal Residual (GMRES) method to min ∈R...
متن کاملConvergence of Inner-Iteration GMRES Methods for Least Squares Problems
We develop a general convergence theory for the generalized minimal residual method for least squares problems preconditioned with inner iterations. The inner iterations are performed by stationary iterative methods. We also present theoretical justifications for using specific inner iterations such as the Jacobi and SOR-type methods. The theory is improved particularly in the rankdeficient cas...
متن کاملPreconditioned Iterative Methods for Solving Linear Least Squares Problems
New preconditioning strategies for solving m × n overdetermined large and sparse linear least squares problems using the CGLS method are described. First, direct preconditioning of the normal equations by the Balanced Incomplete Factorization (BIF) for symmetric and positive definite matrices is studied and a new breakdown-free strategy is proposed. Preconditioning based on the incomplete LU fa...
متن کاملPreconditioned Iterative Methods for Weighted Toeplitz Least Squares Problems
We consider the iterative solution of weighted Toeplitz least squares problems. Our approach is based on an augmented system formulation. We focus our attention on two types of preconditioners: a variant of constraint preconditioning, and the Hermitian/skew-Hermitian splitting (HSS) preconditioner. Bounds on the eigenvalues of the preconditioned matrices are given in terms of problem and algori...
متن کاملComparison Results on Preconditioned GAOR Methods for Weighted Linear Least Squares Problems
We present preconditioned generalized accelerated overrelaxation methods for solving weighted linear least square problems. We compare the spectral radii of the iteration matrices of the preconditioned and the original methods. The comparison results show that the preconditioned GAOR methods converge faster than the GAOR method whenever the GAOR method is convergent. Finally, we give a numerica...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Japan Journal of Industrial and Applied Mathematics
سال: 2008
ISSN: 0916-7005,1868-937X
DOI: 10.1007/bf03167519